170 research outputs found

    Rhythmic complexity and predictive coding::A novel approach to modeling rhythm and meter perception in music

    Get PDF
    Musical rhythm, consisting of apparently abstract intervals of accented temporal events, has a remarkable capacity to move our minds and bodies. How does the cognitive system enable our experiences of rhythmically complex music? In this paper, we describe some common forms of rhythmic complexity in music and propose the theory of predictive coding (PC) as a framework for understanding how rhythm and rhythmic complexity are processed in the brain. We also consider why we feel so compelled by rhythmic tension in music. First, we consider theories of rhythm and meter perception, which provide hierarchical and computational approaches to modeling. Second, we present the theory of PC, which posits a hierarchical organization of brain responses reflecting fundamental, survival-related mechanisms associated with predicting future events. According to this theory, perception and learning is manifested through the brain’s Bayesian minimization of the error between the input to the brain and the brain’s prior expectations. Third, we develop a PC model of musical rhythm, in which rhythm perception is conceptualized as an interaction between what is heard (“rhythm”) and the brain’s anticipatory structuring of music (“meter”). Finally, we review empirical studies of the neural and behavioral effects of syncopation, polyrhythm and groove, and propose how these studies can be seen as special cases of the PC theory. We argue that musical rhythm exploits the brain’s general principles of prediction and propose that pleasure and desire for sensorimotor synchronization from musical rhythm may be a result of such mechanisms

    Music and Brain Plasticity: How Sounds Trigger Neurogenerative Adaptations

    Get PDF
    This contribution describes how music can trigger plastic changes in the brain. We elaborate on the concept of neuroplasticity by focussing on three major topics: the ontogenetic scale of musical development, the phenomenon of neuroplasticity as the outcome of interactions with the sounds and a short survey of clinical and therapeutic applications. First, a distinction is made between two scales of description: the larger evolutionary scale (phylogeny) and the scale of individual development (ontogeny). In this sense, listeners are not constrained by a static dispositional machinery, but they can be considered as dynamical systems that are able to adapt themselves in answer to the solicitations of a challenging environment. Second, the neuroplastic changes are considered both from a structural and functional level of adaptation, with a special focus on the recent findings from network science. The neural activity of the medial regions of the brain seems to become more synchronised when listening to music as compared to rest, and these changes become permanent in individuals such as musicians with year-long musical practice. As such, the question is raised as to the clinical and therapeutic applications of music as a trigger for enhancing the functionality of the brain, both in normal and impaired people

    Neural Correlates of Music Listening: Does the Music Matter?

    Get PDF
    The last decades have seen a proliferation of music and brain studies, with a major focus on plastic changes as the outcome of continuous and prolonged engagement with music. Thanks to the advent of neuroaesthetics, research on music cognition has broadened its scope by considering the multifarious phenomenon of listening in all its forms, including incidental listening up to the skillful attentive listening of experts, and all its possible effects. These latter range from objective and sensorial effects directly linked to the acoustic features of the music to the subjectively affective and even transformational effects for the listener. Of special importance is the finding that neural activity in the reward circuit of the brain is a key component of a conscious listening experience. We propose that the connection between music and the reward system makes music listening a gate towards not only hedonia but also eudaimonia, namely a life well lived, full of meaning that aims at realizing one’s own “daimon” or true nature. It is argued, further, that music listening, even when conceptualized in this aesthetic and eudaimonic framework, remains a learnable skill that changes the way brain structures respond to sounds and how they interact with each other

    Comment on Solberg and Jensenius: The Temporal Dynamics of Embodied Pleasure in Music

    Get PDF
    In the paper 'Pleasurable and Intersubjective Embodied Experiences of Electronic Dance Music', Ragnhild Torvanger Solberg and Alexander Refsum Jensenius report on a study in which the movements and self-reported affective responses of a group of dancing participants were recorded and related to structural properties of Electronic Dance Music. They observed that, compared with tracks that had a relatively flat dynamic development, tracks which included a 'break-down', 'build-up' and 'drop' of textural layers were associated with greater changes in movement amount and higher ratings of pleasure. Here I comment on their results and methodological approach and use the opportunity to address the continuous pleasure that was treated as a control in this experiment, discussing some reasons why affective responses to music with more evenly distributed dynamic progressions are so often ignored

    MUSIKKENS SPROG

    Get PDF
    Musik er ofte blevet kaldt for et universelt sprog, men i hvor høj grad er sprog og musik analoge? Med udgangspunkt i målinger af hjerneaktiviteten hos musikere og ikke-musikere med EEG (elektroencefalografi) og MEG (magnetisk encefalografi), handler denne artikel om, hvorvidt hjernens aktivitet i forbindelse med musik og sprog kan sammenlignes, og hvad denne indsigt i givet fald fører med sig. Det sandsynliggøres, at den højere kognitive bearbejdning af musik og sprog delvist har samme neurale fundament − for musikere i særdeleshed

    Applying Acoustical and Musicological Analysis to Detect Brain Responses to Realistic Music: A Case Study

    Get PDF
    Music information retrieval (MIR) methods offer interesting possibilities for automatically identifying time points in music recordings that relate to specific brain responses. However, how the acoustical features and the novelty of the music structure affect the brain response is not yet clear. In the present study, we tested a new method for automatically identifying time points of brain responses based on MIR analysis. We utilized an existing database including brain recordings of 48 healthy listeners measured with electroencephalography (EEG) and magnetoencephalography (MEG). While we succeeded in capturing brain responses related to acoustical changes in the modern tango piece Adios Nonino, we obtained less reliable brain responses with a metal rock piece and a modern symphony orchestra musical composition. However, brain responses might also relate to the novelty of the music structure. Hence, we added a manual musicological analysis of novelty in the musical structure to the computational acoustic analysis, obtaining strong brain responses even to the rock and modern pieces. Although no standardized method yet exists, these preliminary results suggest that analysis of novelty in music is an important aid to MIR analysis for investigating brain responses to realistic music.Peer reviewe

    Applying stochastic spike train theory for high-accuracy MEG/EEG

    Get PDF
    The accuracy of electroencephalography (EEG) and magnetoencephalography (MEG) is challenged by overlapping sources from within the brain. This lack of accuracy is a severe limitation to the possibilities and reliability of modern stimulation protocols in basic research and clinical diagnostics. As a solution, we here introduce a theory of stochastic neuronal spike timing probability densities for describing the large-scale spiking activity in neural networks, and a novel spike density component analysis (SCA) method for isolating specific neural sources. Three studies are conducted based on 564 cases of evoked responses to auditory stimuli from 94 human subjects each measured with 60 EEG electrodes and 306 MEG sensors. In the first study we show that the large-scale spike timing (but not non-encephalographic artifacts) in MEG/EEG waveforms can be modeled with Gaussian probability density functions with …Non peer reviewe

    The MMN as a viable and objective marker of auditory development in CI users

    Get PDF
    In the present article, we review the studies on the use of the mismatch negativity (MMN) as a tool for an objective assessment of cochlear-implant (CI) functioning after its implantation and as a function of time of CI use. The MMN indexes discrimination of different sound stimuli with a precision matching with that of behavioral discrimination and can therefore be used as its objective index. Importantly, these measurements can be reliably carried out even in the absence of attention and behavioral responses and therefore they can be extended to populations that are not capable of behaviorally reporting their perception such as infants and different clinical patient groups. In infants and small children with CI, the MMN provides the only means for assessing the adequacy of the CI functioning, its improvement as a function of time of CI use, and the efficiency of different rehabilitation procedures. Therefore, the MMN can also be used as a tool in developing and testing different novel rehabilitation procedures. Importantly, the recently developed multi-feature MMN paradigms permit the objective assessment of discrimination accuracy for all the different auditory dimensions (such as frequency, intensity, and duration) in a short recording time of about 30 min. Most recently, such stimulus paradigms have been successfully developed for an objective assessment of music perception, too. (C) 2017 Elsevier B.V. All rights reserved.Peer reviewe

    Music in the brain

    Get PDF
    Music is ubiquitous across human cultures — as a source of affective and pleasurable experience, moving us both physically and emotionally — and learning to play music shapes both brain structure and brain function. Music processing in the brain — namely, the perception of melody, harmony and rhythm — has traditionally been studied as an auditory phenomenon using passive listening paradigms. However, when listening to music, we actively generate predictions about what is likely to happen next. This enactive aspect has led to a more comprehensive understanding of music processing involving brain structures implicated in action, emotion and learning. Here we review the cognitive neuroscience literature of music perception. We show that music perception, action, emotion and learning all rest on the human brain’s fundamental capacity for prediction — as formulated by the predictive coding of music model. This Review elucidates how this formulation of music perception and expertise in individuals can be extended to account for the dynamics and underlying brain mechanisms of collective music making. This in turn has important implications for human creativity as evinced by music improvisation. These recent advances shed new light on what makes music meaningful from a neuroscientific perspective
    corecore